Enjoy These Highlighted Articles
Review
Assessment of Fatigue and Recovery in Sport: Narrative Review
Fatigue is a phenomenon associated with decreases in both physical and cognitive performances and increases in injury occurrence. Competitive athletes are required to complete demanding training programs with high workloads to elicit the physiological and musculoskeletal adaptations plus skill acquisition necessary for performance. High workloads, especially sudden rapid increases in training loads, are associated with the occurrence of fatigue. At present, there is limited evidence elucidating the underlying mechanisms associating the fatigue generated by higher workloads and with an increase in injury risk. The multidimensional nature and manifestation of fatigue have led to differing definitions and dichotomies of the term. Consequently, a plethora of physiological, biochemical, psychological and performance markers have been proposed to measure fatigue and recovery. Those include self-reported scales, countermovement jump performance, heart rate variability, and saliva and serum biomarker analyses. The purpose of this review is to provide an overview of fatigue and recovery plus methods of assessments.
Review
Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes
Heart rate variability reflects fluctuations in the changes in consecutive heartbeats, providing insight into cardiac autonomic function and overall physiological state. Endurance athletes typically demonstrate better cardiac autonomic function than non-athletes, with lower resting heart rates and greater variability. The availability and use of heart rate variability metrics has increased in the broader population and may be particularly useful to endurance athletes. The purpose of this review is to characterize current practices and applications of heart rate variability analysis in endurance athletes. Important considerations for heart rate variability analysis will be discussed, including analysis techniques, monitoring tools, the importance of stationarity of data, body position, timing and duration of the recording window, average heart rate, and sex and age differences. Key factors affecting resting heart rate variability will be discussed, including exercise intensity, duration, modality, overall training load, and lifestyle factors. Training applications will be explored, including heart rate variability-guided training and the identification and monitoring of maladaptive states such as overtraining. Lastly, Lundstrom et al will examine some alternative uses of heart rate variability, including during exercise, post-exercise, and for physiological forecasting and predicting performance.
Physiology & Biochemistry
Influence of Wearing Blue Lenses on Melatonin Production and Performance in Volleyball Players
Baptista et al analyzed the effects of wearing blue lenses on melatonin level, physical and cognitive performance. Fifteen youth volleyball players (15.0±1.5 yrs) attended the laboratory on 3 occasions (48-h interval): on the 1st visit they were familiarized with the procedures of the study, and on 2nd and 3rd visits they were submitted to the testing protocol wearing transparent (control) or blue lens glasses in a counterbalanced crossover design. The protocol consisted of 10 min in “total darkness,” 30 min of light stimulation (wearing blue or transparent lenses), followed by an attentional test, and an agility T-test (without wearing the glasses). Samples of saliva (to determine melatonin concentration) were obtained pre- and post-exposure (30 min) to artificial light, wearing the lenses. Sleepiness, alertness, attention, mood, and perceived recovery status and performance variables (reaction time and T-test) were assessed after lens exposure. Melatonin levels did not differ within and between groups (blue lenses, pre: 0.79±0.73 and post: 1.19±1.374 pg/dl, p=0.252, effect size (ES)=0.38; control, pre: 0.97±1.00 and post: 0.67±0.71 pg/dl, p=0.305, ES=–0.35). Nonetheless, melatonin differences were significantly correlated with physical sedation for glasses with blue lenses (r=−0.526; p=0.04). No other variables differed (p>0.05) between protocols, including T-test performance (p=0.07; ES=0.41). Blue lenses do not influence melatonin levels, cognitive/physical performance, and mood status in amateur youth volleyball players.